Port 2049 - NFS

Network File System (NFS) is a network file system developed by Sun Microsystems and has the same purpose as SMB. Its purpose is to access file systems over a network as if they were local. However, it uses an entirely different protocol. NFS is used between Linux and Unix systems. This means that NFS clients cannot communicate directly with SMB servers. NFS is an Internet standard that governs the procedures in a distributed file system. While NFS protocol version 3.0 (NFSv3), which has been in use for many years, authenticates the client computer, this changes with NFSv4. Here, as with the Windows SMB protocol, the user must authenticate.

Version

Features

NFSv2

It is older but is supported by many systems and was initially operated entirely over UDP.

NFSv3

It has more features, including variable file size and better error reporting, but is not fully compatible with NFSv2 clients.

NFSv4

It includes Kerberos, works through firewalls and on the Internet, no longer requires portmappers, supports ACLs, applies state-based operations, and provides performance improvements and high security. It is also the first version to have a stateful protocol.

NFS version 4.1 (RFC 8881) aims to provide protocol support to leverage cluster server deployments, including the ability to provide scalable parallel access to files distributed across multiple servers (pNFS extension). In addition, NFSv4.1 includes a session trunking mechanism, also known as NFS multipathing. A significant advantage of NFSv4 over its predecessors is that only one UDP or TCP port 2049 is used to run the service, which simplifies the use of the protocol across firewalls.

NFS is based on the Open Network Computing Remote Procedure Call (ONC-RPC/SUN-RPC) protocol exposed on TCP and UDP ports 111, which uses External Data Representation (XDR) for the system-independent exchange of data. The NFS protocol has no mechanism for authentication or authorization. Instead, authentication is completely shifted to the RPC protocol's options. The authorization is derived from the available file system information. In this process, the server is responsible for translating the client's user information into the file system's format and converting the corresponding authorization details into the required UNIX syntax as accurately as possible.

The most common authentication is via UNIX UID/GID and group memberships, which is why this syntax is most likely to be applied to the NFS protocol. One problem is that the client and server do not necessarily have to have the same mappings of UID/GID to users and groups, and the server does not need to do anything further. No further checks can be made on the part of the server. This is why NFS should only be used with this authentication method in trusted networks.

Footprinting the Service

When footprinting NFS, the TCP ports 111 and 2049 are essential. We can also get information about the NFS service and the host via RPC, as shown below in the example.

Nmap

ammartiger@htb[/htb]$ sudo nmap 10.129.14.128 -p111,2049 -sV -sC

Starting Nmap 7.80 ( https://nmap.org ) at 2021-09-19 17:12 CEST
Nmap scan report for 10.129.14.128
Host is up (0.00018s latency).

PORT    STATE SERVICE VERSION
111/tcp open  rpcbind 2-4 (RPC #100000)
| rpcinfo: 
|   program version    port/proto  service
|   100000  2,3,4        111/tcp   rpcbind
|   100000  2,3,4        111/udp   rpcbind
|   100000  3,4          111/tcp6  rpcbind
|   100000  3,4          111/udp6  rpcbind
|   100003  3           2049/udp   nfs
|   100003  3           2049/udp6  nfs
|   100003  3,4         2049/tcp   nfs
|   100003  3,4         2049/tcp6  nfs
|   100005  1,2,3      41982/udp6  mountd
|   100005  1,2,3      45837/tcp   mountd
|   100005  1,2,3      47217/tcp6  mountd
|   100005  1,2,3      58830/udp   mountd
|   100021  1,3,4      39542/udp   nlockmgr
|   100021  1,3,4      44629/tcp   nlockmgr
|   100021  1,3,4      45273/tcp6  nlockmgr
|   100021  1,3,4      47524/udp6  nlockmgr
|   100227  3           2049/tcp   nfs_acl
|   100227  3           2049/tcp6  nfs_acl
|   100227  3           2049/udp   nfs_acl
|_  100227  3           2049/udp6  nfs_acl
2049/tcp open  nfs_acl 3 (RPC #100227)
MAC Address: 00:00:00:00:00:00 (VMware)

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 6.58 seconds

The rpcinfo NSE script retrieves a list of all currently running RPC services, their names and descriptions, and the ports they use. This lets us check whether the target share is connected to the network on all required ports. Also, for NFS, Nmap has some NSE scripts that can be used for the scans. These can then show us, for example, the contents of the share and its stats.

ammartiger@htb[/htb]$ sudo nmap --script nfs* 10.129.14.128 -sV -p111,2049

Starting Nmap 7.80 ( https://nmap.org ) at 2021-09-19 17:37 CEST
Nmap scan report for 10.129.14.128
Host is up (0.00021s latency).

PORT     STATE SERVICE VERSION
111/tcp  open  rpcbind 2-4 (RPC #100000)
| nfs-ls: Volume /mnt/nfs
|   access: Read Lookup NoModify NoExtend NoDelete NoExecute
| PERMISSION  UID    GID    SIZE  TIME                 FILENAME
| rwxrwxrwx   65534  65534  4096  2021-09-19T15:28:17  .
| ??????????  ?      ?      ?     ?                    ..
| rw-r--r--   0      0      1872  2021-09-19T15:27:42  id_rsa
| rw-r--r--   0      0      348   2021-09-19T15:28:17  id_rsa.pub
| rw-r--r--   0      0      0     2021-09-19T15:22:30  nfs.share
|_
| nfs-showmount: 
|_  /mnt/nfs 10.129.14.0/24
| nfs-statfs: 
|   Filesystem  1K-blocks   Used       Available   Use%  Maxfilesize  Maxlink
|_  /mnt/nfs    30313412.0  8074868.0  20675664.0  29%   16.0T        32000
| rpcinfo: 
|   program version    port/proto  service
|   100000  2,3,4        111/tcp   rpcbind
|   100000  2,3,4        111/udp   rpcbind
|   100000  3,4          111/tcp6  rpcbind
|   100000  3,4          111/udp6  rpcbind
|   100003  3           2049/udp   nfs
|   100003  3           2049/udp6  nfs
|   100003  3,4         2049/tcp   nfs
|   100003  3,4         2049/tcp6  nfs
|   100005  1,2,3      41982/udp6  mountd
|   100005  1,2,3      45837/tcp   mountd
|   100005  1,2,3      47217/tcp6  mountd
|   100005  1,2,3      58830/udp   mountd
|   100021  1,3,4      39542/udp   nlockmgr
|   100021  1,3,4      44629/tcp   nlockmgr
|   100021  1,3,4      45273/tcp6  nlockmgr
|   100021  1,3,4      47524/udp6  nlockmgr
|   100227  3           2049/tcp   nfs_acl
|   100227  3           2049/tcp6  nfs_acl
|   100227  3           2049/udp   nfs_acl
|_  100227  3           2049/udp6  nfs_acl
2049/tcp open  nfs_acl 3 (RPC #100227)
MAC Address: 00:00:00:00:00:00 (VMware)

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 0.45 seconds

Once we have discovered such an NFS service, we can mount it on our local machine. For this, we can create a new empty folder to which the NFS share will be mounted. Once mounted, we can navigate it and view the contents just like our local system.

Mounting NFS Share

ammartiger@htb[/htb]$ mkdir target-NFS
ammartiger@htb[/htb]$ sudo mount -t nfs 10.129.14.128:/ ./target-NFS/ -o nolock
ammartiger@htb[/htb]$ cd target-NFS
ammartiger@htb[/htb]$ tree .

.
└── mnt
    └── nfs
        ├── id_rsa
        ├── id_rsa.pub
        └── nfs.share

2 directories, 3 files

There we will have the opportunity to access the rights and the usernames and groups to whom the shown and viewable files belong. Because once we have the usernames, group names, UIDs, and GUIDs, we can create them on our system and adapt them to the NFS share to view and modify the files.

List Contents with Usernames & Group Names

ammartiger@htb[/htb]$ ls -l mnt/nfs/

total 16
-rw-r--r-- 1 cry0l1t3 cry0l1t3 1872 Sep 25 00:55 cry0l1t3.priv
-rw-r--r-- 1 cry0l1t3 cry0l1t3  348 Sep 25 00:55 cry0l1t3.pub
-rw-r--r-- 1 root     root     1872 Sep 19 17:27 id_rsa
-rw-r--r-- 1 root     root      348 Sep 19 17:28 id_rsa.pub
-rw-r--r-- 1 root     root        0 Sep 19 17:22 nfs.share

List Contents with UIDs & GUIDs

ammartiger@htb[/htb]$ ls -n mnt/nfs/

total 16
-rw-r--r-- 1 1000 1000 1872 Sep 25 00:55 cry0l1t3.priv
-rw-r--r-- 1 1000 1000  348 Sep 25 00:55 cry0l1t3.pub
-rw-r--r-- 1    0 1000 1221 Sep 19 18:21 backup.sh
-rw-r--r-- 1    0    0 1872 Sep 19 17:27 id_rsa
-rw-r--r-- 1    0    0  348 Sep 19 17:28 id_rsa.pub
-rw-r--r-- 1    0    0    0 Sep 19 17:22 nfs.share

It is important to note that if the root_squash option is set, we cannot edit the backup.sh file even as root.

We can also use NFS for further escalation. For example, if we have access to the system via SSH and want to read files from another folder that a specific user can read, we would need to upload a shell to the NFS share that has the SUID of that user and then run the shell via the SSH user.

After we have done all the necessary steps and obtained the information we need, we can unmount the NFS share.

Unmounting

ammartiger@htb[/htb]$ cd ..
ammartiger@htb[/htb]$ sudo umount ./target-NFS

Enumerating NFS

showmount -e [IP]

Mount NFS Share

sudo mount -t nfs IP:share /tmp/mount/ -nolock

-t type

IP ip of the targer

share share name

/tmp/mount/ directory to mount share

--nolock Specifies not to use NLM locking

Fo priv esc change its owner and mode

chown root bash
chmod +s bash

Now execute it with -p

./bash -p

Last updated